Page 1 of 4 12 ... LastLast
Results 1 to 10 of 31

Thread: PS JailBreak PS3 Exploit Reverse Engineering is Detailed!

  1. #1
    Join Date
    Apr 2005

    PS JailBreak PS3 Exploit Reverse Engineering is Detailed!

    Earlier today we reported on the open-source PS JailBreak PS3 exploit from Mathieulh's PlayStation 3 hacking team dubbed PSGroove, and as promised the reverse-engineering details are now available linked above and posted below, as follows:

    Analysis of the PSJailbreak Exploit


    The PSJailbreak dongle is a modchip for the PlayStation 3 that allows users to backup and play games off the harddrive. Unlike the modchips of the Previous generation, or the modchips so far for the Xbox360 and Wii, this modchip simply plugs into the USB port on the front of the PS3, avoiding the need for complex soldering and voiding of your warranty.

    As the time of writing this document, the final PSJailbreak has not been released, but a number of samples were given out and at least one fell into the hands of someone who owned a USB sniffer.

    This analysis of the exploit is based on those USB sniffer logs, issues encountered during the development of the opensource PSGroove version of the exploit and a number of educated guesses. It will probably be updated as new information comes in.

    The initial analysis by suggested that it was a Stack overflow attack. After further analist it turns out that this exploit is a Heap Overflow attack. The exploit carefully manipulates the heap by plugging and unplugging fake usb devices with large device descriptors until the device on port 4 which misreports its size to overwrite one of malloc's boundary tags.

    The state of the PS3

    The exploit takes place while the PS3 is looking for the Jig (triggered by pressing eject within 200ms of pressing power). It is suspected that the ps3 spends around 5 seconds doing nothing but initializing devices on the USB bus, so there is little extra code running to mess the exploit up.

    Setting up the heap

    The PSJailbreak dongle emulates a 6 port USB hub. By attaching and detaching fake devices to the ports of the hub the dongle has control over the mallocing and freeing of various blocks of memory that hold the device and configuration descriptors.

    Port one

    After the hub has been initialized, a device is plugged into port one with a pid/vid of 0xAAAA/0x5555, It has 4 configurations with each one is 0xf00 bytes long. This is just under the size of 4k page, so malloc will have probably have request a new page for each one, unless it already has enough free space, but at least one will be aligned at the start of a page.

    The ps3 also changes the configuration the 2nd time it is read so the configuration in the ps3 memory is only 18 bytes long.

    It just so happens that that this data contains the payload that the exploit will jump to after gaining control of the execution, but that is not important for the exploit.

    Port two

    After the PS3 has finished reading the port one device descriptors, the dongle switches back to the address of the hub and reports that a device has been plugged into port two.

    This device has a pid/vid of 0xAAAA/0xBBBB, and it has 1 configuration descriptor which is 22 bytes long. Only the first 18 bytes are real usb data and the remaining 4 bytes are:
    04 21 B4 2F
    With a length of 04 and an invalid type byte, anything interpreting it as USB descriptor will probably skip over it and the last 2 bytes. It is suspected that this is just here to make this descriptor take up an exact amount of heap space.

    Port Three

    The port three device has a pid/vid of 0xAAAA/0x5555, the same as port one. Unlike the port one device it has 2 configuration descirptors, each 0xa4d bytes long The data that fills them is junk but it may or may not be relevant that if you treat the data as descriptors they will have valid lengths. These descriptors will probably be allocated to the start of a fresh 4kb page that follows the page with the last port one descriptor and port three descriptors.

    Port Two Disconnect

    After port three is connected, port two will be disconnected, this will cause the port two descriptors to be freed, which frees up some space between the Port One and Port Three descriptors.

    The exploit

    The heap is now prepared for our exploit.

    Port Four Connection

    A device is connected to port 4, with a pid/vid of 0xAAAA/0x5555 and 3 configurations.

    Configuration A

    This is a normal configuration, 18 bytes long

    Configuration B

    This configuration is the same as Configuration A, except it changes its total length from 18 bytes to to zero bytes after the PS3 has read it the first time and allocated space for it.

    This is where things get vague, this is key to the exploit and will somehow cause the the extra data at the end of Configuration C to overwrite one of malloc's boundary tag, most likely the one belonging to Port Three.

    But the exact reason for this buffer overrun is hard to guess without actually seeing the exploited code.

    Configuration C

    This starts the same as configuration A, but has 14 bytes of extra data at the end.
    .. .. 3e 21 00 00 00 00
    fa ce b0 03 aa bb cc dd
    80 00 00 00 00 46 50 00
    80 00 00 00 00 3d ee 70
    The first 6 are just padding (but the 3e might be important if this ever gets interpreted as a USB descriptor.) Then there are 3 u64 values, each 8 bytes long.

    The first two values are stored for use by the shell code later just before malloc's boundary tag.

    The 3rd value overwrites the first value of the boundary tag, which is pointer to the next free section of memory. The replacement pointer will point to a function somewhere. This will cause a malloc to allocate memory in the wrong place, sometime in the future, allowing the exploit to overwrite an existing function.

    Port Five

    The dongle plugs the fake Jig into Port Five right after Port Four has done its job. It uses the same PID/VID that the original Sony Jig uses (0x054C/0x02EB) and probably the same configuration with the same end points.

    It is suspected that because the Jig is a known device that the PS3 was waiting for, it's device and configuration descriptors will not be malloced into the heap.

    The PS3 sends a 64 byte challenge to the fake Jig to authenticate it, and the dongle replies with 64 bytes of static data. The PS3 will malloc space for this response, and because the boundary tags have been modified by Port Four, malloc will return a pointer to 24 bytes before a function that has something to do with free and the 64 bytes of data will be written over top of the function.

    At the point, no code has been patched yet, so the Jig's static response will fail to authenticate the jig.

    Unplug Port Three

    The dongle now sends a message that port 3 has been unplugged. This will cause the PS3 to free the Port Three's configuration data, the very same buffer which had its boundary tag overwritten by Port Four.

    So our shellcode gets called, with R3 pointing to the boundary tag before Port Three's Configuration data.

    The Shellcode

    PPC Assembly:
     ROM:00000018                 ld      %r4, -0x10(%r3)
     ROM:0000001C                 ld      %r3, -8(%r3)
     ROM:00000020 loc_20:                                 # CODE XREF: sub_18+14?j
     ROM:00000020                 ld      %r5, 0x18(%r3)
     ROM:00000024                 addi    %r3, %r3, 0x1000
     ROM:00000028                 cmpw    %r4, %r5
     ROM:0000002C                 bne     loc_20
     ROM:00000030                 addi    %r6, %r3, -0xFE0
     ROM:00000034                 mtctr   %r6
     ROM:00000038                 bctr
    This takes a pointer to the corrupted boundary tags in r3.

    r4 is loaded with the 0xFACEB003AABBCCDD tag, then r3 is loaded with 0x8000000000465000, both of these values are stored just before the boundary tag.

    The shell code then scans every 4KB block (0x1000 bytes) starting at 0x8000000000465000, checking for 0xFACEB003AABBCCDD tag in the u64 at 0x18 in each page.

    When it finds it, the shellcode will jump to offset 0x20 in the payload.

    After the exploit


    The exploit is now completed: Port Five, Port Four then Port One will be unplugged.

    Hopefully the Payload will have copied itself out of the heap before Port One is unplugged.

    Port Six

    The device that gets plugged into Port Six has nothing to do with the exploit. It has a vid/pid of 0xAAAA/0xDEC0 (on the PPC, which is big endian, the pid is 0xC0DE).

    The payload sends it a single byte (0xAA) control transfer so that the dongle will know that the exploit was successful so it can turn the green LED on to signal the user.

    A function in the original PSJailbreak Payload will make sure that this device stays plugged in. If it is ever unplugged then it will call LV1_Panic and your PS3 will shutdown. PSGroove has removed this 'feature'.

    The Payload

    The actual payload is outside the scope of this document (There might be a 2nd document discussing the original PSJailbreak payload), but we will discuss the environment.

    The payload will start in an unknown position, aligned to a 4KB boundary, it should either use position independent code, or copy itself to a known location. The payload has full control over the lv2 (aka gameos) kernel and anything below it. It doesn't have any control over lv1 (aka the hypervisor) without a 2nd exploit (the original Geohot exploit should still work.)

    The Jig authentication code is most likely running in lv1 or an isolated SPU so it is not possible to patch it with this exploit.

    The lv2 kernel is loaded at the time of the exploit, perfect for patching or you could replace it with something better like a linux kernel. A linux kernel running in this environment would have all the privilege of the regular gameos kernel.


    What firmware versions will this work with?

    The exploit should work on any firmware version, but the current payload only works on 3.41.

    As i read it is not needed to have the dongle plugged in the whole time? My Question is what happens after rebooting the ps3? will homebrews still be installed and bootable?

    They will be still installed, but unless you boot with the exploit you can't run them. This might change at a later date, think back to the original xbox softmods.

    How hard would it be for Sony to patch this exploit in the next firmware release? If trivial, does that mean that basically this exploit will be useless in a few weeks unless we never update ever again?

    Semi-trivial. but yes, in a few weeks don't upgrade your console.

    Can this exploit and having full access to lvl 2 faciliate research of other vulnerabilities in the system, or does this not give us more than what dev consoles already have?

    I think dev consoles only give access to lvl 2 applications. Besides only a few people have dev consoles, so just having it in reach of more people increases the odds of finding exploits.

    Export to other devices like BlackBerry

    I think this can be exported to other devices with USB port access, in example, Blackberry phones. Imagine a Blackberry application conected to de PS3 via usb cable runing a java app that do the magic work. Can you help me with tech specs about a similar port? i dont know the abstraction level of the USB BlackBerry Libs, cold be sufficient a serial read/write to the port? thanks!

    [imglink=|PS JailBreak PS3 Exploit Reverse Engineering is Detailed!][/imglink]
    More PlayStation 3 News...

  2. #2
    foresttree1 Guest
    when i see all these devices like the ps3 and even the psjailbreak being hacked it amazes me how much of skill all these hacker have. I bet you even MIT could compete with them. Great job to all the people who have worked on this and keep up the good work.

  3. #3
    tripellex Guest
    That last bit is outstanding news to hear... that Lv2 is wide open, ready to be manipulated and possibly even replace the kernel altogether with a Linux kernel running under the same elevated privileges as GameOS. Having heard that, I'm wondering if there really is any limit to what can be done now...

  4. #4
    Jes03 Guest
    Isn't this just telling $ony how its done so now they know exactly how to patch it?

  5. #5
    Bamber Guest
    So, the exploit should be able to run on ANY version of OS (e.g. 3.15), but the payload is tailored to the current version (3.41) and that explains why it can't be run on any older versions (yet!).

    Anyone fancy making it 3.15 compatible for the Linux/OtherOS freaks out there?

    Interesting stuff!

  6. #6
    Kiriller Guest
    Great news, thanks everyone involved for their hard work! Can't wait for end user product, don't feel like pulling out my solder and ordering chips..

  7. #7
    Jes03 Guest
    Does that mean we can reinstall OtherOS and have it dual boot?

    Thats 2 things I miss from the 60GB phat is OtherOS and PS2 BC. 1 out of the 2 would be nice in the slim. If we can have both those features then I'll be 1 really happy gamer!

  8. #8
    teusjuh Guest
    i hope someone will port it to psp, because all that chips are sold out or long waiting time.

  9. #9
    tripellex Guest
    Quote Originally Posted by Jes03 View Post
    Isn't this just telling $ony how its done so now they know exactly how to patch it?
    Doesn't matter really, so long as you don't update. The genie is out of the bottle, and with full access to LV2 (and LV1 with Geo's exploit), there literally is no limit to what we can do with the system over time, including finding other exploits, or even possibly shutting out $ony altogether.

  10. #10
    NinjaOptimus Guest
    great article. hope someone ports this to phones and other cheaper programmable boards

Page 1 of 4 12 ... LastLast

Tags for this Thread

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts