Hey there.

So... you use an ad blocker. That's cool. Sometimes we do too.

But without ad revenue, we wouldn't even be here. And we might not be here much longer.

Please disable your ad blocker and click to continue.

Page 1 of 5 12 ... Last
  1. #1
    Join Date
    Apr 2005

    Video: XBox 360 Reset Glitch Hack on Fat and Slim Models Arrives

    Today XBox 360 hackers GliGli and Tiros have released an XBox 360 Reset Glitch Hack for both the Fat and Slim models, which includes source code and a demo video below courtesy of Razkar2011 via YouTube.

    Download: XBox 360 Reset Glitch Hack v1.0 / GliGli Tools Source Code‎ / XBox 360 Reset Glitch Hack Guide / ECC Glitch Generator v1.0 / Xell Reloaded 2Stage 28-08-11 / GIT / Wiki

    To quote: The XBox 360 reset glitch hack - Introduction / some important facts: tmbinc said it himself, software based approaches of running unsigned code on the 360 mostly don't work, it was designed to be secure from a software point of view.

    The processor starts running code from ROM (1bl) , which then starts loading a RSA signed and RC4 crypted piece of code from NAND (CB).

    CB then initialises the processor security engine, its task will be to do real time encryption and hash check of physical DRAM memory. From what we found, it's using AES128 for crypto and strong (Toeplitz ?) hashing. The crypto is different each boot because it is seeded at least from:
    • A hash of the entire fuseset.
    • The timebase counter value.
    • A truly random value that comes from the hardware random number generator the processor embeds. on fats, that RNG could be electronically deactivated, but there's a check for "apparent randomness" (merely a count of 1 bits) in CB, it just waits for a seemingly proper random number.

    CB can then run some kind of simple bytecode based software engine whose task will mainly be to initialise DRAM, CB can then load the next bootloader (CD) from NAND into it, and run it.

    Basically, CD will load a base kernel from NAND, patch it and run it.

    That kernel contains a small privileged piece of code (hypervisor), when the console runs, this is the only code that would have enough rights to run unsigned code. In kernel versions 4532/4548, a critical flaw in it appeared, and all known 360 hacks needed to run one of those kernels and exploit that flaw to run unsigned code. On current 360s, CD contains a hash of those 2 kernels and will stop the boot process if you try to load them. The hypervisor is a relatively small piece of code to check for flaws and apparently no newer ones has any flaws that could allow running unsigned code.

    On the other hand, tmbinc said the 360 wasn't designed to withstand certain hardware attacks such as the timing attack and "glitching". Glitching here is basically the process of triggering processor bugs by electronical means. This is the way we used to be able to run unsigned code.

    The reset glitch in a few words

    We found that by sending a tiny reset pulse to the processor while it is slowed down does not reset it but instead changes the way the code runs, it seems it's very efficient at making bootloaders memcmp functions always return "no differences". memcmp is often used to check the next bootloader SHA hash against a stored one, allowing it to run if they are the same. So we can put a bootloader that would fail hash check in NAND, glitch the previous one and that bootloader will run, allowing almost any code to run.

    Details for the fat hack

    On fats, the bootloader we glitch is CB, so we can run the CD we want.

    cjak found that by asserting the CPU_PLL_BYPASS signal, the CPU clock is slowed down a lot, there's a test point on the motherboard that's a fraction of CPU speed, it's 200Mhz when the dash runs, 66.6Mhz when the console boots, and 520Khz when that signal is asserted.

    So it goes like that:
    • We assert CPU_PLL_BYPASS around POST code 36 (hex).
    • We wait for POST 39 start (POST 39 is the memcmp between stored hash and image hash), and start a counter.
    • When that counter has reached a precise value (it's often around 62% of entire POST 39 length), we send a 100ns pulse on CPU_RESET.
    • We wait some time and then we deassert CPU_PLL_BYPASS.
    • The cpu speed goes back to normal, and with a bit of luck, instead of getting POST error AD, the boot process continues and CB runs our custom CD.

    The NAND contains a zero-paired CB, our payload in a custom CD, and a modified SMC image.
    A glitch being unreliable by nature, we use a modified SMC image that reboots infinitely (ie stock images reboot 5 times and then go RROD) until the console has booted properly. In most cases, the glitch succeeds in less than 30 seconds from power on that way.

    Details for the slim hack

    The bootloader we glitch is CB_A, so we can run the CB_B we want.

    On slims, we weren't able to find a motherboard track for CPU_PLL_BYPASS. Our first idea was to remove the 27Mhz master 360 crystal and generate our own clock instead but it was a difficult modification and it didn't yield good results.

    We then looked for other ways to slow the CPU clock down and found that the HANA chip had configurable PLL registers for the 100Mhz clock that feeds CPU and GPU differential pairs. Apparently those registers are written by the SMC through an I2C bus.
    I2C bus can be freely accessed, it's even available on a header (J2C3).

    So the HANA chip will now become our weapon of choice to slow the CPU down (sorry tmbinc, you can't always be right, it isn't boring and it does sit on an interesting bus

    So it goes like that:
    • We send an i2c command to the HANA to slow down the CPU at POST code D8 .
    • We wait for POST DA start (POST DA is the memcmp between stored hash and image hash), and start a counter.
    • When that counter has reached a precise value, we send a 20ns pulse on CPU_RESET.
    • We wait some time and then we send an i2c command to the HANA to restore regular CPU clock.
    • The cpu speed goes back to normal, and with a bit of luck, instead of getting POST error F2, the boot process continues and CB_A runs our custom CB_B.

    When CB_B starts, DRAM isn't initialised so we chose to only apply a few patches to it so that it can run any CD, the patches are:
    • Always activate zero-paired mode, so that we can use a modified SMC image.
    • Don't decrypt CD, instead expect a plaintext CD in NAND.
    • Don't stop the boot process if CD hash isn't good.

    CB_B is RC4 crypted, the key comes from the CPU key, so how do we patch CB_B without knowing the CPU key?
    RC4 is basically: crypted = plaintext xor pseudo-random-keystream

    So if we know plaintext and crypted, we can get the keystream, and with the keystream, we can encrypt our own code. It goes like that:
    • guessed-pseudo-random-keystream = crypted xor plaintext
    • new-crypted = guessed-pseudo-random-keystream xor plaintext-patch

    You could think there's a chicken and egg problem, how did we get plaintext in the first place? Easy: we had plaintext CBs from fat consoles, and we thought the first few bytes of code would be the same as the new CB_B, so we could encrypt a tiny piece of code to dump the CPU key and decrypt CB_B!

    The NAND contains CB_A, a patched CB_B, our payload in a custom plaintext CD, and a modified SMC image. The SMC image is modified to have infinite reboot, and to prevent it from periodically sending I2C commands while we send ours.

    Now, maybe you haven't realised yet, but CB_A contains no checks on revocation fuses, so it's an unpatchable hack !


    Nothing is ever perfect, so there are a few caveats to that hack:
    • Even in the glitch we found is pretty reliable (25% success rate per try on average), it can take up to a few minutes to boot to unsigned code.
    • That success rate seems to depend on something like the hash of the modified bootloader we want to run (CD for fats and CB_B for slims).
    • It requires precise and fast hardware to be able to send the reset pulse.

    Our current implementation

    We used a Xilinx CoolRunner II CPLD (xc2c64a) board, because it's fast, precise, updatable, cheap and can work with 2 different voltage levels at the same time. We use the 48Mhz standby clock from the 360 for the glitch counter. For the slim hack, the counter even runs at 96Mhz (incremented on rising and falling edges of clock) The cpld code is written in VHDL. We need it to be aware of the current POST code, our first implementations used the whole 8 bits POST port for this, but we are now able to detect the changes of only 1 POST bit, making wiring easier.


    We tried not to include any MS copyrighted code in the released hack tools. The purpose of this hack is to run Xell and other free software, I (GliGli) did NOT do it to promote piracy or anything related, I just want to be able to do whatever I want with the hardware I bought, including running my own native code on it.


    GliGli, Tiros: Reverse engineering and hack development.
    cOz: Reverse engineering, beta testing.
    Razkar, tuxuser: beta testing.
    cjak, Redline99, SeventhSon, tmbinc, anyone I forgot... : Prior reverse engineering and/or hacking work on the 360.

    More PlayStation 3 News...

  2. #2
    HAVOK7 Guest
    xbox 360 scene FTMFW!!! learn ps3 devs learn something from these guys, there are no egomaniacs in the 360 scene that is why it prospers.

  3. #3
    Natepig Guest
    I was thinking of getting a 360 to complete my current console collection and this has made my mind up.

  4. #4
    spunkybunny Guest
    So ANY Xbox360 can be jtagged now? This is great! Looks like I will be getting one of mine done tomorrow.

  5. #5
    Sleepdroid Guest
    Lol , look at the guy in the tv reflect , is he undressed?

  6. #6
    elser1 Guest
    never had any xbox.. what does this mean?

  7. #7
    Natepig Guest
    If you are a developer it means that you can use your xbox 360 in a way you decide cause its yours.

    If your anyone else it means working backups on all models of xbox.

  8. #8
    Join Date
    Apr 2005


    I have now updated the first post with both an ECC Glitch Generator v1.0 and Xell Reloaded 2Stage 28-08-11 for those interested. Below are the details on each:

    ECC Glitch Generator v1.0 by BestPig: logic-sunrise.com/news-341650-ecc-glitch-generator-v10-creez-vos-images-pour-le-glitch-hack-facilement.html

    Rough translation: BestPig, our encoder national, returned to the stage 360 to deliver us a new application that follows the posting of a new Hack. This app will allow people with allergies to command line or do not want to install Python to create your images easily and ECC in this neat interface that made its previous application known.

    Operation is simple: you choose your motherboard model, where you want the image to be created and select your original nand.

    Like his previous soft, it fully integrate English and Swedish.

    XeLL Reloaded 28/08/2011 via Razkar: libxenon.org/index.php?topic=147.0

    Besides the "Reset Glitch Hack" there's another big announcement! Cancerous, [cOz], Ced2911, GliGli, RedLine99 and Tuxuser are proud to release today the first official version of XeLL-Reloaded (Codename: 2Stages)

    Here's a list of the major improvements:
    • Its divided in 2 stages: 1st Stage initalizes the Hardware, uncompresses and executes 2nd Stage, 2nd Stage (based on LibXenon) loads all required drivers and does the usual "XeLL tasks"
    • XeLL is based on LibXenon now
    • XeLL is running with all CPU cores activated
    • Optimized CPU Usage
    • TinyEHCI is used, delivers full USB 2.0 speed when acccessing mass storage media
    • lwip network stack upgraded to v1.4 rc2 - It's faster
    • It can access the DVD-drive via DMA now: faster reading
    • It's possible to reload into XeLL now when you are inside a LibXenon Application
    • Refactored ELF Launching Code - shouldn't have issues when executed via XeLL-Launch
    • New HTTP Webinterface
    • Proper hardware init / shutdown (e.g. after XeLL Launch)
    • Supports upgrading XeLL with a XeLL-2Stages binary from USB, named "updxell.bin"
    • Infinite bootloop when looking for ELFs to execute
    • Parses / decrypts keyvault (either with real or virtual CPUkey)

    For now, there is still a little work to do on the nandflasher so this feature is disabled and a update will comes in the following weeks. If you have a Jtag console, you can update XeLL with tuxuser's apps : XeLL Updater or LxNANDFlasher (Use at your own risks).

  9. #9
    elser1 Guest
    time to buy an xbox i thinks.. thanks!!

  10. #10
    Pcsx2006 Guest
    Already got 250gb kintec bundle, this is going to be fun.

Page 1 of 5 12 ... Last

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts

Log in